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We consider a scalar field theory in Minkowski spacetime and define a coarse-grained closed time path
~CTP! effective action by integrating quantum fluctuations of wavelengths shorter than a critical value. We
derive an exact CTP renormalization group equation for the dependence of the effective action on the coarse
graining scale. We solve this equation using a derivative expansion approach. Explicit calculation is performed
for thelf4 theory. We discuss the relevance of the CTP average action in the study of nonequilibrium aspects
of phase transitions in quantum field theory.@S0556-2821~96!00722-9#
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I. INTRODUCTION

The study of phase transitions in quantum field theory
of great interest in cosmology and particle physics. Cosm
logical inflationary models@1–3#, the electroweak phase
transition @4,5#, and the formation of chiral condensate
@6–8# are clear examples of the very interesting problem
related to phase transitions in this context.

The first analyses of phase transitions in quantum fie
theory were based on the use of the finite temperature eff
tive potential. The effective potential is useful only in quas
static situations and, therefore, one must use the comp
effective action in order to address the nonequilibrium a
pects of the transition.

The usual effective action is not adequate to study init
value problems since it gives the evolution equations f
‘‘in-out’’ matrix elements of the background fields. The
equations for these matrix elements are neither real n
causal. The solution to this problem is to use the so-call
‘‘in-in’’ or closed time path ~CTP! effective action, intro-
duced by Schwinger and Keldysh many years ago@9#. This
action gives real and causal evolution equations for the ‘‘i
in’’ mean value of the background fields. The CTP effectiv
action has been used to analyze inflationary models, anis
ropy dissipation in the early Universe, the backreaction pro
lem in semiclassical and stochastic gravity, the quantum
classical transition in quantum Brownian motion and Qua
tum Field Theory, etc.@10,11#.

There is, however, one aspect that, to our knowledge, h
not been fully investigated. Phase transitions occur via t
formation and growth ofspatial domains. Inside these do-
mains, the order parameter of the transition evolves dynam
cally, and one is usually interested in computing its tempo
evolution. The order parameter is, therefore,the average of
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the quantum mean value of the field in a spatial volume of
the size of the domain.

In previous works, this problem has been addressed usin
different approaches. On the one hand, phase transition
have been analyzed using the CTP effective action, assumin
that the order parameter depends only on time. Presumably
this time-dependent function describes the dynamics of the
order parameter inside one typical domain@12#. It has been
shown that domain growth is an effect characterized by the
rapid evolution of~exponentially unstable! long wavelength
modes. Such a dynamics can be nonperturbatively describe
by a Hartree approximation to the two-point correlation
function @13#. On the other hand, phenomenological
Langevin-like equations which account for dissipation and
noise have been proposed and numerically solved~see Ref.
@14# for one such type of calculation, where the order param-
eter is coupled to a thermal bath and a Markovian Langevin
equation is put forward in order to mimic thermal phase
mixing during a first-order phase transition!.

In this paper, as a step towards a first principle calcula-
tion, we will proceed using an analogy with what is done in
the context of condensed matter@15#. We will coarse grain
our theory up to a length scaleL21 comparable to the initial
size of a typical domain. In this way, we will define a
‘‘coarse-grained effective action’’~CGEA!, which will be
basically the usual CTP action in which only those modes of
the scalar field withuqW u.L are integrated out. As a result of
tracing the short wavelength modes~the so-called ‘‘environ-
mental’’ degrees of freedom!, the CTP average action, which
depends on the long wavelength modes~the so-called ‘‘sys-
tem’’ degrees of freedom!, develops dissipation and noise
terms.

We will derive an exact evolution equation for the depen-
dence of the CGEA on the coarse-graining scale. In prin-
ciple, it is possible to derive a Langevin equation for the long
wavelength order parameterf(xW ,t) starting from the CGEA.
However, in order to make the analysis more tractable, here
6338 © 1996 The American Physical Society
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54 6339EXACT CTP RENORMALIZATION GROUP EQUATION . . .
we will compute the CTP average action using some sim
approximations. The major approximation we will make is
ignore spatial correlations between different domains. T
allows the study of the dynamics for coarse-grained, tim
dependent configurationsf(t) inside a given domain.

The paper is organized as follows: in Sec. II we define
CGEA and compute it in the one-loop approximation, ma
ing an adiabatic expansion. We should mention that by us
such approximations we are not aiming at studying dom
growth since, as we have already stated, they fail to desc
such a dynamical process. Rather, our intention is to ill
trate a simple calculation of the CTP effective action. In S
III we derive the exact renormalization group~RG! equation
for the evolution of the CGEA, which is a generalization
CTP of the Euclidean Wegner and Houghton’s RG equat
@16#. Using a derivative expansion, in Sec. IV we reduce t
functional equation to a system of coupled differential equ
tions, which are then numerically solved. The interest of
results is not only restricted to nonzero coarse-grain
scales, but also to provide nonperturbative approximation
standard (L50) quantum field theory. In Sec. V we mak
the conclusions.

In order to make contact with related works, we wou
like to mention that the CGEA defined here was origina
introduced in Ref.@17# in order to study inflationary cosmol
ogy, and it was perturbatively evaluated in Ref.@18# in order
to analyze the decoherence of the long wavelength secto
thelf4 field theory. It is also similar in spirit to theEuclid-
ean average effective action proposed earlier@19–24#. The
main difference between both actions is that the Euclide
action averages the field over a spacetime volume, while
CTP action averages the field over a spatial volume, and i
therefore, more useful to study nonequilibrium situations.

In the above-mentioned works, and also in this paper,
coarse-grained or average effective action interpolates
tween the bare theory atL5L0 ~the ultraviolet cutoff! and
the physical theory at the coarse-graining scale. Another p
sibility has been recently analyzed in Ref.@25#, where an
effective action is defined that interpolates between
physical theory atT50 and the physical theory atTÞ0.

II. THE CTP COARSE-GRAINED EFFECTIVE ACTION

Let us considerlf4 field theory in Minkowski spacetime
In order to deal with nonequilibrium scenarios we follo
Schwinger-Keldysh formulation, doubling the number
fields and imposing CTP boundary conditions. The coar
grained CTP effective actionSL(f1 ,f2) is defined as

eiSL~f1 ,f2![E )
L0.uqW u.L

D@f1~qW ,t !#

3D@f2~qW ,t !#eiScl~f1 ,f2!, ~1!

whereScl(f1 ,f2)5Scl(f1)2Scl(f2). Note that a sharp
cutoff L and an ultraviolet cutoffL0 have been used. The
functional integrals over the short wavelength modes are
be computed using standard CTP boundary conditions:
fieldsf1 andf2 must have only negative and positive fre
quency modes, respectively, in the past2T, and match in
the futureT. In general, the CTP coarse-grained effecti
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action has an imaginary part, related to noise, and a real part,
related to dissipation. The equations of motion derived from
it are, however, real and causal.

An exact calculation of the above-defined action is quite
difficult, and it is, therefore, necessary to use approximation
methods. One possible approach is to make perturbations in
the coupling constantl @18#. Another possibility that we will
explore here is to use a loop expansion. In the one-loop
approximation our effective action can be written as
SL(f1 ,f2)5Scl(f1)2Scl(f2)1DSL(f1 ,f2), where
the last term is linear in\.

As mentioned in Introduction, we shall be concerned with
background configurations that depend only on timef6(t).
We split the complete fieldf6→f6(t)1w6 , where the
fluctuationsw6 contain spatial modes withuqW u.L. Note that
we are assuming that the only mode withuqW u,L is the spa-
tial homogeneous one (qW 50). The one-loop correction is

eiDSL„f1~ t !,f2~ t !…5E )
L0.uqW u.L

D@w1#D@w2#

3expF i2E dtE d3q

~2p!3

3S w1

d2Scl
df1df1

w12w2

d2Scl
df2df2

w2D G
3expS i2E d3q

~2p!3
E dt

3
d

dt
@w1ẇ12w2ẇ2# D , ~2!

where the functional derivatives are evaluated atw650. The
action for the quantum fluctuations is that of a free field with
massM6

2 5V9(f6), whereV is the potential in the~bare!
classical action. Their spatial Fourier modes are, therefore,
harmonic oscillators with time-dependent frequency, namely,
wq,6
2 (t)5q21V9„f6(t)… with q5uqW u. The functional inte-

gral is quadratic and can be done straightforwardly. The re-
sult is

DSL„f1~ t !,f2~ t !…

5
i

2EL0.uqW u.L

d3q

~2p!3

3 ln@g2~qW ,T!ġ1~qW ,T!2g1~qW ,T!ġ2~qW ,T!#, ~3!

where the modes g6 are solutions to g̈6(qW ,t)
1wq,6

2 (t)g6(qW ,t)50 satisfying CTP conditions in the past
and having an arbitrary normalization in the future@we will
present an explicit proof of Eq.~3! in Sec. IV#.

Even in the one-loop approximation, the effective action
is a very complicated object and additional approximations
are needed in order to get analytic results. The simplest ap-
proximation one can think of is the adiabatic approximation
@26#, in which one neglects the excitations of the quantum
fluctuation field due to the time dependence of the back-
ground fieldf6(t). This approximation misses the very im-
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portant stochastic aspects of the theory. However, it will
useful as a warm-up and also to make contact with the
clidean works.

We can write the mode functions as

g6~qW ,t !5
1

A2Wq„f6~ t !…
e6 i*2T

t dt8Wq„f6~ t8!…, ~4!

where the functionsWq(f6) satisfy

Wq
21

1

2
FẄq

Wq
2
3

2
S Ẇq

Wq
D 2G5wq

2 . ~5!

The adiabatic approximation consists in solving this equat
using an expansion in derivatives of the background fie
The result is

Wq
25q21V91

5

16F S V-
q21V9D

2

2
V99

4~q21V9!G ḟ2

2
V-

4~q21V9!
f̈1•••, ~6!

where the ellipsis denotes higher derivative terms.
In the one-loop and adiabatic approximations, the aver

CTP effective action is, therefore, up to a surface term eva
ated at t5T, given by DSL(f1 ,f2)5DSL(f1)
2DSL(f2), where

DSL~f!5
1

2E dtE
L

L0 d3q

~2p!3

3S 2Aq21V91
ḟ2

32

V-2

~q21V9!5/2
D . ~7!

Including the classical part, we can write the total effe
tive action as

SL~f!5E dtS 2VL~f!1
1

2
@11ZL~f!#ḟ21••• D ,

~8!

where

VL5V1
1

2EL

L0 d3q

~2p!3
Aq21V9

5V1
1

4p2 FL0

4
AL0

21V9SV9

2
1L0

2D2
V92

8

3 ln~L01AL0
21V9!2

L

4
AL21V9SV9

2
1L2D

1
V92

8
ln~L1AL21V9!G ~9!
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ZL5
1

32EL

L0 d3q

~2p!3
V-2

~q21V9!5/2

5
1

192p2

V-2

V9 F L0
3

~L0
21V9!3/2

2
L3

~L21V9!3/2G . ~10!

While the functionZL(f) is finite whenL0→`, the poten-
tial VL(f) diverges in the UV. In order to make contact with
the conventional renormalization schemes, we write the one
loop bare potential asV(f)5 1

2(mR
21dm2)f21 1/4!(lR

1dl)f4, where the renormalized mass and coupling con-
stant are defined as

mR
2[

]2VL

]f2 UL5f50 , lR[
]4VL

]f4 U
L5f50

~11!

and the counterterms are

dm252
lR

32p2 FmR
2

2
12L0

21mR
2 lnS mR

2

4L0
2D G ,

dl52
3lR

2

32p2 F21lR
2 lnS mR

2

4L0
2D G . ~12!

Therefore, the renormalized potential is

VL
ren~f!5

1

2
mR
2f2S 12

lR

64p2D 1
1

4!
lRf4S 12

3lR

16p2D
1

1

32p2 F2L~2L21mR
21 1

2lRf2!

3AL21mR
21 1

2 lRf21~mR
21 1

2lRf2!2

3 lnS L1AL21mR
21 1

2 lRf2

mR
D G ~13!

and the renormalized wave function renormalization is

ZL
ren~f!5

1

192p2

lR
2f2

mR
21 1

2 lRf2

3F12
L3

~L21mR
21 1

2 lRf2!3/2
G . ~14!

The flow with the coarse-graining scale of the effective
potentialVL and of the wave function factorZL in the one-
loop approximation follows immediately from Eqs.~9! and
~10!:

L
dVL

dL
52

L3

4p2AL21V9,

L
dZL

dL
52

L3

64p2

V-2

~L21V9!5/2
. ~15!

The equation for the effective potential has been previously
obtained in Ref.@27# using a blocking procedure.
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FIG. 1. The coarse-grained effective potentialVL for L0510,mR
251024, andlR50.1. Solid and dotted lines are the RG-improved and

one-loop results, respectively.
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The study of the potentialVL shows that it is possible to
have a nontrivial domain structure even in the symmetric
phase of the theory (mR

2.0) @27#. Indeed, for some range of
the parameters of the theory, it may happen that, althou
mR
2.0, the squared bare mass is negative. In this case,

potential has a double-well structure with two symmetric
nonzero minima for scalesL greater than a critical one
Lcr , and has a unique minimum atf50 for smaller values
of L ~see Fig. 1!. The interpretation of this fact is that the
average field fluctuates around zero for scalesz.Lcr

21 or
around the nonzero minima for scalesz,Lcr

21 . The sym-
metrical phase, therefore, contains domains of si
z'Lcr

21 . We remark that this phenomenon takes place in t
symmetrical phase of the theory, and should not be confus
with spontaneous symmetry breaking~SSB!.

On the other hand, when SSB takes place (mR
2,0), both

the renormalized one-loop potential and wave functio
renormalization develop an imaginary part fo

L,LSSB[A2mR
22 1

2lRf2. These imaginary parts generat
nonreal terms in the equations of motion, and are artifacts
the adiabatic approximation. They have nothing to do wi
the noise terms in the CTP effective action that we ha
mentioned before. It is worth noting that the wave functio
renormalization diverges asL approachesLSSB from above.
This clearly shows that the adiabatic approximation is n
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adequate to describe the temporal evolution of the order pa
rameter neither in the vicinity ofLSSB nor for L,LSSB.

As pointed out in Ref.@28#, the imaginary part in the
effective potential is a signal for instabilities towards the
formation of domains of size at least as great asA2mR

2. This
issue has been addressed using the Hartree approximation
Ref. @13# where it was shown that the size of the domains for
very weakly coupled theories can be much larger than the
zero temperature correlation lengthA2mR

2.

III. THE EXACT CTP RENORMALIZATION
GROUP EQUATION

In this section we shall derive an exact~nonperturbative!
renormalization group equation for the flow of the CGEA.
The approach follows that of Wegner and Houghton for Eu-
clidean spacetime. We start by writing the CGEA for a scale
L2dL, namely,

eiSL2dL~f1 ,f2![E )
L0.uqW u.L2dL

D@f1~qW ,t !#

3D@f2~qW ,t !#eiScl[f1 ,f2] . ~16!

The modes to be integrated can be split into two parts: one
within the shellL.uqW u.L2dL and the other for modes
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with L0.uqW u.L. Expanding the action in powers of the
modes within the shell, one has

eiSL2dL~f1 ,f2!

5eiSL~f1 ,f2!E )
L.uqW u.L2dL

D@f1#D@f2#ei ~S11S21S3!

3expF i2E 8 d3q

~2p!3
E dt

d

dt
„fa~2qW ,t !ḟb~qW ,t !gab…G ,

~17!

where

S15E dtE 8 d3q

~2p!3
fa~qW ,t !

]SL

]fa~2qW ,t !
,

S25
1

2E dtdt8E 8 d3q

~2p!3
fa~qW ,t !

3
]2SL

]fa~2qW ,t !fb~qW ,t8!
fb~qW ,t8!, ~18!

the prime in the momenta integrals meaning that integrati
is restricted to the shell. In the functional derivatives ofSL

~which contains modes whose wave vectors satisfyuqW u,L)
the modes within the shell are set to zero. We use the no
tion

fa~qW ,t !5S f1~qW ,t !

f2~qW ,t !
D ; gab5S 1 0

0 21D . ~19!

TheS3 term is cubic in the modes within the shell, and
can be proved that it does not contribute in the lim
dL→0 ~basically, this is because one is doing a one-loo
calculation for the shell modes!. The functional integrals
over the shell modes have the CTP boundary conditions
comment about the last exponential factor in Eq.~17! is in
order. Usually, one discards it because it is a surface te
but in the CTP formalism it must be kept since the bounda
conditions are thatf1(qW ,T)5f2(qW ,T) with T→` for the
modesqW within the shell.

In order to evaluate the functional integrals we split th
field asfa5f̄a1wa and impose the boundary conditions o
the ‘‘classical’’ fieldsf̄6 , i.e., they vanish in the past2T
~negative and positive frequencies, respectively! and match
in the Cauchy surface at timeT. The fluctuationswa vanish
both in the past and in the future. The classical fields a
solutions to

S 2
d2

dt2
2q2Dgabf̄a~2qW ,t !

1E dt8
]2Sint

]wa~2qW ,t !]wb~qW 8,t8!
f̄b~2qW 8,t8!50, ~20!

where we have split the CGEA asSL(f6)5Skin(f6)
1Sint(f6) with
n

ta-

t
it
p

A

m,
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e

re

Skin5E d4xF12 ~]mf1!21
i e

2
f1
2 G

2E d4xF12 ~]mf2!22
i e

2
f2
2 G . ~21!

As before, in the functional derivatives the modes within the
shell are set to zero.

Let ha be solutions to Eq.~20!, vanishing in the past and
satisfying an arbitrary normalization in the future, and let
f(qW ) be the common value the fields take in the future. We
can then write

f̄a~qW ,t !5f~qW !
ha~qW ,t !

ha~qW ,T!
. ~22!

We first integrate over the common valuef(qW ) and then we
proceed with the functional integration over the fluctuations
wa ~both are Gaussian integrals with a ‘‘source’’ term!. One
finally gets

L
]SL

]L
5

iL

2dLE 8 d3q

~2p!3
lnS ḣ1~qW ,T!

h1~qW ,T!
2
ḣ2~qW ,T!

h2~qW ,T!
D 1

L

2dL

3E 8 d3q

~2p!3 S ḣ1~qW ,T!

h1~qW ,T!
2
ḣ2~qW ,T!

h2~qW ,T!
D 21

3S E dt
ha~qW ,t !

ha~qW ,T!

]SL

]wa~2qW ,t !
D 22 iL

2dL

3 ln det8~Aab!1
L

2dLE dt dt8
d3q

~2p!3
]SL

]wa~qW ,t8!

3Aab
21~2qW ,t;qW 8,t8!

]SL

]wb~qW ,t8!
. ~23!

The 232 matrixAab has the elements

A11~2qW ,t;qW 8,t8!5S 2
d2

dt2
2q21 i e D d~ t2t8!d3~qW 1qW 8!

1
]2Sint

]w1~2qW ,t !]w1~qW 8,t8!
,

A22~2qW ,t;qW 8,t8!5S d2dt2 1q21 i e D d~ t2t8!d3~qW 1qW 8!

1
]2Sint

]w2~2qW ,t !]w2~qW 8,t8!
,

A12~2qW ,t;qW 8,t8!5A21~qW 8,t8;2qW ,t !

5
]2Sint

]w1~2qW ,t !]w2~qW 8,t8!
. ~24!

The primed determinant must be calculated as the product of
the eigenvalues ofAab in a space of functions with wave
vectors within the shell (L2dL,uqW u,L) and satisfying
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null conditions both in the past and in the future. Simil
conditions are to be used to evaluate the inverseAab

21 .
The Eq. ~23! is exact in the sense that no perturbativ

approximation has so far been used. It is the main resul
the paper. It is similar to its Euclidean counterpart@16#, but
involves two fields and CTP boundary conditions. It contai
all the information of the influence of the short waveleng
modes on the long wavelength ones, and should be the s
ing point for a nonperturbative analysis of decoherence, d
sipation, domain formation, and out of equilibrium evolu
tion.

IV. DERIVATIVE EXPANSION

The overwhelming complexity of the exact renormaliz
tion group equation means that in practice one is compe
to use some sort of truncation. The usual ones are expans
in the number of powers of the fields~see Ref.@29# for a
detailed analysis! or in derivatives of them@30–32#. In the
following we shall make use of the derivative expansion a
proach.

We will prove that, within this approach, the exact R
equation~23! admits a solution of the form

SL~f1 ,f2!5SL~f1!2SL~f2!. ~25!
ar

e
t of
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th
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is-
-

a-
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p-

G

Clearly, this is not the most general form that can be imag
ined for the coarse-grained action because contributions i
volving mixing of both fields are not taken into account. The
main drawback of this approach is, therefore, that as me
tioned in Sec. II, we miss the stochastic aspects of the theor
such as dissipation and noise. However, the proposed for
for the CGEA will be enough for studying the renormaliza-
tion group flow of real time field theories.

The great technical advantage of the form equation~25! is
that the second functional derivative of the action has n
crossed terms, leading to a diagonal matrixAab whose deter-
minant is easily computed as the product of two determ
nants, one forA11 and the other forA22 . Following Ref.
@33#, one can express both det8A11 and det8A22 as the
product over momenta of a constant~momenta independent!

times the modeh(qW ,T) evaluated at the final timeT. There-
fore, the last term of the exact RG equation can be written a

lndet8~Aab!5 ln@det8~A11!det8~A22!#

5E 8 d3q

~2p!3
ln@h1~qW ,T!h2~qW ,T!#. ~26!

The first and the third terms can then be cast in the form of
single logarithm, and we arrive at
L
]SL

]L
52

iL

2dLE 8 d3q

~2p!3
ln@h2~qW ,T!ḣ1~qW ,T!2h1~qW ,T!ḣ2~qW ,T!#1

L

2dLE 8 d3q

~2p!3 S ḣ1~qW ,T!

h1~qW ,T!
2
ḣ2~qW ,T!

h2~qW ,T!
D 21

3S E dt
ha~qW ,t !

ha~qW ,T!

]SL

]wa~2qW ,t !
D 21 L

2dLE dt dt8E 8 d3q

~2p!3
]SL

]wa~qW ,t !
Aab

21~2qW ,t;qW ,t8!
]SL

]wb~2qW t8!
. ~27!
k

o
r
n

e
e

Note that the equations for the two modesh1 andh2 @Eq.
~20!# simplify considerably, since the two equations are d
coupled@a side point: it is easy to prove the one-loop resu
Eq. ~3!, starting from the above equation~27!#. What we still
have to prove is that the proposed form for the action ma
the right-hand side~RHS! of the exact RG equation split in
the same form.

Next, we make a derivative expansion of the interacti
term. As our coarse graining explicitly breaks Lorentz inva
ance, we allow different coefficients for the temporal a
spatial derivatives: namely,

Sint~f6!5E d4x@2VL~f6!1 1
2ZL~f6!ḟ6

2 2 1
2YL~f6!

3~¹W f6!21•••#. ~28!

We expand the fields around a time-dependent backgrou
f65f6(t)1w6(xW ,t) and Fourier transform in space. W
shall solve the Eq.~20! for the modes to zeroth order in th
fluctuations, i.e., we equate terms in the equations forh6 that
are independent ofw6’s. Since the first functional derivative
of the CGEA (S8) is linear in the fluctuationsw6 , we put
e-
lt,

es

n
i-
d

nd:

S850 and keep thew6-independent contributions toSint9
After some little algebra and functional derivations, we get

]2Sint

]w~qW ,t !]w~2qW 8,t8!

5F2V92
1

2
ḟ2Z92Yq22Z8ḟ

d

dt
2Z

d2

dt2
2f̈Z81••• G

3d~ t2t8!d3~qW 1qW 8!, ~29!

where the primes denote derivation with respect to the field
and the ellipsis denotes terms linear in the fluctuations. In
this expression and hereafter, we omit~unless explicitly
stated! the6 subscripts in the background fieldsf6(t), in
the potentialVL„f6(t)…, and in the wave function factors
ZL„f6(t)… andYL„f6(t)…. Note that the effective mass of
the modes depends on the time-dependent background
f(t). The equations of motion for the modesha become
localized and take the form of harmonic oscillators with vari-
able frequency and a damping term. The boundary condi-
tions to be imposed are the aforementioned CTP ones.
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If one defines new modes asf (qW ,t)5(11ZL)
1/2h(qW ,t),

the damping terms cancel out and the new modes are
monic oscillators with frequency

wq
2~ t !5q2

11YL

11ZL
1

VL9

11ZL
1
1

4

ZL8
2

~11ZL!2
ḟ21

1

2

ZL8

11ZL
f̈.

~30!

Using an adiabatic expansion for the modes,
har- h6~qW ,t !5~11ZL!21/2
1

A2W6~qW ,t !
e6 i*2T

t W6~qW ,t8!dt8,

~31!

we can evaluate the logarithmic term in the RHS of the exact
RG equation~27!. The other terms are quadratic in the fluc-
tuations and do not contribute to the order we are working.
We have
h2~qW ,T!ḣ1~qW ,T!2h1~qW ,T!ḣ2~qW ,T!5expH 1 i E
2T

T

@W1~qW ,t !2W2~qW ,t !#dtJ

3H F2
Z18

2~11Z1!
ḟ12

Ẇ1

2W1
1 iW1G2F2

Z28

2~11Z2!
ḟ22

Ẇ2

2W2
2 iW2G

2AW1W2~11Z1!~11Z2!
J

t5T

.

~32!
i
h
n

e

.
e

t

-

e

-

f

Note that, as in the one-loop case, the plus and minus fie
do decouple, up to a factor evaluated att5T. This factor is
just a surface contribution which, upon taking logarithm,
irrelevant for the equations of motion. On the contrary, t
first factor does depend on the whole history of the fields a
is consistent with the proposal for the CGEA, Eq.~25!.
Hence, the RGE can be casted in the form

LE dtH F2
dVL~f1!

dL
1
1

2

dZL~f1!

dL
ḟ1
2 G

2F2
dVL~f2!

dL
1
1

2

dZL~f2!

dL
ḟ2
2 G J

5
L

2dLE 8 d3q

~2p!3
E @W1~qW ,t !2W2~qW ,t !#dt.

~33!

In the adiabatic expansion, theW’s read

W25AL1BLḟ2~ t !1CLf̈~ t !, ~34!

where the coefficients are

AL5L2
11YL

11ZL
1

VL9

11ZL
,

BL5
ZL8

2

4~11ZL!2
1
5AL8

2

16AL
2 2

AL9

4AL
,

CL5
ZL8

2~11ZL!
2

AL8

4AL
. ~35!

Integrating by parts, we get
lds

s
e
d

E dtH 2L
dVL

dL
1
1

2
L
dZL

dL
ḟ2J

5
L3

4p2E dtH AAL1
1

2
ḟ2F BL

AAL

2S CL

AAL
D 8G J .

~36!

Therefore, the dependence of the potential and the wav
function renormalization on the infrared scale is given by

L
dVL

dL
52

L3

4p2AL2
11YL

11ZL
1

VL9

11ZL
,

L
dZL

dL
5

L3

4p2 F BL

AAL

2S CL

AAL
D 8G . ~37!

Remember that these equations are valid both for thef1

field and for thef2 field.
The above equations are the main result of this section

They describe the flow of the coarse-grained action with th
infrared scale in the derivative expansion of the exact CTP
renormalization group equation. It is interesting to note tha
the higher derivative terms modify the differential equation
for the effective potential.

We have obtained two equations for the three indepen
dent, unknown functionsVL , ZL , andYL. In order to find
an additional relation between the spatial and temporal wav
funtion renormalization functionsZL andYL , it is necessary
to write the exact RGE up to quadratic order in the fluctua
tions. We will not present this long calculation here. For
simplicity, we will assume thatZL andYL are small num-
bers, and therefore, we will set them to zero on the RHS o
Eq. ~37!. This assumption will be confirmed by the numeri-
cal calculations performed in the symmetric phase of the
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FIG. 2. The coarse-grained wave funtion renormalizationZL for L0510, mR
251024, and lR50.1. Solid and dotted lines are the

RG-improved and one-loop results, respectively.
r.

B

e
-
,

a-
-

n

t

theory. Note that in this approximation we recover the R
improved equation proposed in Ref.@27# for the coarse-
grained effective potential.

There are other points which are worth noting. The fi
one is that, when we substituteVL , ZL , andYL by their
classical valuesVL5V, ZL5YL50, on the RHS of both
equations we obtain the one-loop evolution equations@Eq.
~15!#. The second comment is about renormalization. In t
one-loop calculation it was possible to take the lim
L0→`. The infinities were absorbed into the bare mass a
coupling constant. There was no need for wave funct
renormalization. However, in this nonperturbative calcu
tion it is not possible to renormalize the theory~as is the case
for Hartree, Gaussian, and 1/N approximations!. For these
reasons we keepL0 as a large~compared with the mass! but
finite number.

As an illustration we consider thelf4 field theory. The
differential equations must be solved with the classical init
conditionsVL0

5V, ZL0
50, andYL0

50. To this end we
have written a simple code which evolves the equations fr
the UV scale down to the desired IR scale. We have plot
the results in Figs. 1 and 2, where we show the differen
between the one-loop and the RG-improved solution for
effective potential and the wave function renormalizatio
Note that, at least in the symmetric phase of the theory,
results are consistent with the assumptionZL!1.

Once the functionsVL andZL are known, one can write
G-

rst

he
it
nd
ion
la-

ial

om
ted
ce
the
n.
the

the effective dynamical equations for the order paramete
These equations will be valid as long asf is slowly varying
andZL!1. Therefore, as in the one-loop approximation, the
derivative expansion may be inadequate in the case of SS
for scales in the vicinity of and lower thanLSSB.

V. CONCLUSIONS

The CTP coarse-grained effective action contains all th
information about the influence of the short wavelength sec
tor on the long wavelength sector of the theory. In principle
it is possible to derive from it a Langevin equation for the
order parameter. This Langevin equation can be used to an
lyze domain formation and growth and, in general, the non
equilibrium aspects of phase transitions.

In this paper we have derived an exact evolution equatio
for the dependence of the CGEA with the coarse-graining
scale. This renormalization group equation@Eq. ~23!# is our
main result. We expect this equation to be a useful tool to
generate nonperturbative approximations for the CGEA.

In order to show a simple application of the exact CTP
renormalization group equation, we have solved it using a
derivative expansion. We have obtained a RG improvemen
to the effective potentialVL(f), that coincides with the one
proposed in Ref.@27#, and an improvement to the one-loop
wave function renormalizationZL .

Within the derivative expansion approach, the CGEA is



t
d

-

,
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of the form SL(f1 ,f2)5SL(f1)2SL(f2), i.e., it con-
tains neither dissipative nor noise terms. Only diffusive e
fects are included. As far as a calculation beyond the ad
batic approximation is concerned, we expect that, as soon
we decrease the scale fromL0, dissipative and noise terms
will grow up: the CGEA will develop an imaginary part
~related to noise! and a real part containing interactions be
tween thef6 fields ~dissipation!. This can be easily checked
both in the one-loop approximation and from the exact RG
Indeed, Eq.~3! shows that the one-loop CGEA is, in genera
nonreal unless one uses the adiabatic approximation. On
other hand, the real and imaginary parts of the CGEA are n
decoupled in Eq.~23!, and a nonvanishing real part a
L5L0 will induce an imaginary part at lower scales.

We are currently investigating these issues. In particul
f-
ia-
as

-

E.
l,
the
ot
t

ar,

we are interested in finding a nonperturbative,
L-dependent, fluctuation-dissipation relation from the exac
RGE. Extensions to the cases of finite temperature an
curved spaces are also under investigation.
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